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Abstract 

 

End milling is one of the most used machining techniques for removing metal 

from objects and milled surfaces. It is widely used in tools, aerospace, 

automotive, machine design, and production for joining other parts. Surface 

roughness is a crucial indicator of a product's technological excellence and a 

component that significantly affects manufacturing costs. The effects of several 

factors of the milling process, such as rotational speed, cutting speed, depth of 

cut, number of cutting edges and feed rate, find their influence on the surface 

finish. Surface roughness, cutting forces, and material removal rate were chosen 

as process responses. Taguchi method and the RSM in the evaluation and 

optimization of the machining parameters of end milling for the machining of 

Al 6063/SiO2 by using Minitab 19. The vertical milling machine was used to 

perform experiments based on the Taguchi L27 orthogonal array. The rotational 

speed, cutting speed, weight percentages of Nano SiO2 (1, 3 and 5), number of 

cutting edges, feed rate, and depth of cut were considered machining 

parameters. 

According to ANOVA results, additions and cutting speed are the factors that 

have the greatest impact on the model metal removal rate. 
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1. Introduction 

          Aluminum alloys are the appropriate choice for most 

cases technical engineering applications due to their low density 

and excellent mechanical and thermal properties [1, 2]. Due to 

automation, improved dimension accuracy, faster machining, 

and the ability to optimize manufacturing settings, CNC 

technology is favored [3]. The most significant issue for 

machine operations is the inaccuracy induced by high cutting 

forces. The cutting force model has become a crucial step in 

understanding the behavior of cutting processes to secure the 

stability of the machining system and optimize the process 

parameters. [4] 

Composite materials are often more difficult to machine than 

conventional materials because they are non-homogeneous and 

contain a highly abrasive component. How these materials are 

machined depends on a variety of criteria, including the 

percentage composition and properties of the reinforcing 

elements, the characteristics of the base or matrix material, and 

the primary machining factors. The major goals of this study are 

to ascertain the relationship between input control variables and 

output response as well as the best end-milling parameter 

combination for a variety of output performances [5,6]. A few 

researchers have applied the Design of Experiments (DOE) to 

reduce the number, time, and cost of experiments. To improve 

the quality characteristics of the answers, process parameters 

must be optimized. Turning is the most used operation in the 

manufacturing industry. Therefore, optimization is urgently 

needed. The Taguchi method, genetic algorithms, fuzzy logic, 

and other optimization approaches can be used to increase the 

efficiency of industrial operations. [7]. 

Ozben et al. [8] For different volume fractions, Al/SiCp 

composite surface roughness and tool wear effects of machining 

settings were examined. It was discovered that increasing the 

amount of reinforcement added resulted in increased 

mechanical properties (hardness and impact toughness).  They 

also investigated the machinability qualities and discovered that 

greater reinforcement of SiCp enhanced tool wear and that 

surface roughness was mostly determined by cutting speed, and 

feed rate. Ömer Seçgin et al. [9]  For the milling of AL 6061-

T6, it was determined using Taguchi methodology that the 

optimal levels of optimization parameters for the surface 

roughness were "4000 rev/min for the rotational speed of the 

cutting tool, 0.4 mm for the depth, and the optimal value for the 

feed rate 500 mm/min. Alagarsamy et al. [10] studied the 

effects of the CNC end milling process parameters cutting 

speed, feed rate and depth of cut on the material removal rate 

and surface roughness of AA 7075-15 wt% B4C metal matrix 

composites were studied using the Taguchi method. The metal 

matrix composite was successfully produced using the stir-

casting process. Sesharao, Y., et al. [11] investigated how 

reinforced metal matrix composites affected aluminium alloys. 

The core of this work is the fabrication of the AA6066 

composite with HSS and Cu, the continuous execution of 

machining tests and the evaluation of surface roughness, tool 

wear and shear force of the stir cast samples. The aluminum 

composite is 90 percent AA6066 alloy reinforcement, 6 percent 

high-speed steel and 4 percent cast copper alloy. M A Țîțu et al. 

[12] employed the Taguchi optimization approach to identify 

the best cutting parameters for end-milling. The L27 orthogonal 

matrix served as the foundation for an experimental strategy. 

Both longitudinally and transversely in the cutting direction, the 

surface roughness was measured. The aluminum alloy 7136 is 
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the subject of an experimental study. Wiciak-Pikuła et al.  [13] 

For milling DuralcanTM Composite, a model based on an 

artificial neural network (ANN) based vibration and a model 

based on experimental design were established to analyze the 

effects of machining parameters such as cutting speed, spindle 

speed, and feed rate, axial infeed depth, and radial infeed depth. 

Layatitdev Das et al. [14] Input machining parameters (cutting 

speed, tool feed, and cutting depth) and their effects on 

machining forces, MRR, and surface roughness during milling 

are studied in the creation of Ti6Al4V metal matrix composites. 

According to the results of the ideal test, Ra should be 

minimized, MRR should be maximized, and machining forces 

should be kept to a minimum. 

Metal matrix materials come in many varieties, including those 

made of magnesium, aluminum, zinc, and copper. Aluminum 

oxide (Al2O3), titanium oxide (TiO2), and silicon carbide (SiC) 

can all be used as the hard reinforcement. Nano fillers have 

been used as materials in the development of numerous 

polymeric matrix materials in various fields[15-20]. 

The goal of this article is to explore the effects of several CNC 

machining milling process factors on surface roughness, cutting 

forces, and material removal rate (MRR), including rotating 

speed, cutting speed, feeding rate, nano percentage content, and 

depth of cut.  

2. Taguchi method 

A strong analytical technique for predicting and studying the 

impact of control parameters on performance output is the 

design of experiments. The use of the conventional 

experimental design is challenging, particularly when dealing 

with a high volume of tests and when the number of machining 

parameters rises [21]. The choice of the control parameters is 

the most crucial step in the design of an experiment [22]. As a 

result, the Dr. Genichi Taguchi-created Taguchi method is 

presented as an experimental approach that enables the 

reduction of experimental numbers by employing orthogonal 

arrays and minimizing the effects outside of control parameters 

[21]. The Taguchi approach consists of a plan of experiments 

with the goal of gathering data in a controlled manner, 

conducting these experiments, and analyzing the data to learn 

more about the behavior of the given process [23,24,25]. 

The three steps of Taguchi's design process, as seen in Fig. 1, 

are system design, parameter design, and tolerance design [26]. 

The elements influencing quality features in the manufacturing 

process may be determined via parameter design, which is 

regarded as the most crucial step. Selecting the appropriate 

orthogonal array (OA) in accordance with the controllable 

factors (parameters) is the first stage in Taguchi's parameter 

design. After that, trials are conducted in accordance with the 

OA established before, and the experimental data is assessed to 

determine the ideal circumstance. Following the identification 

of the ideal circumstances, confirmation runs are conducted 

using the determined ideal values for each parameter [26]. 

In Taguchi's methodology, parameter design is an engineering 

technique that focuses on choosing the parameter settings that 

provide the optimum levels of a quality characteristic with the 

smallest sum of fluctuation for a product or process.  Making 

products that are resilient to all noise elements is the primary 

goal of quality engineering [21]. To integrate as many elements 

as feasible into the control factor selection step and to quickly 

identify nonsignificant variables, Taguchi developed the 

standard orthogonal array. Signal-to-noise (S/N) ratio was 

employed by Taguchi as a metric for the choice's qualitative 

attributes. This demonstrates that engineering systems may 

work in a way that allows the production factors that have been 

altered to be separated into three groups [21]: 

1. Controlling variables (variables that have an impact on the 

process variability as shown by the S/N ratio). 

2. Signal elements (elements that have no impact on S/N ratio 

or process mean). 

3. Elements (elements that have no bearing on S/N ratio or 

process mean) 

Signal-to-noise (S/N) ratios are then created from the 

experimental findings. Taguchi chose the signal-to-noise (S/N) 

ratio as the quality criterion, and there are several S/N ratios 

available depending on the type of performance criterion [22]. 

When the features are continuous, the S/N ratio may be divided 

into three categories:  

        Larger the better characteristics: 

SNR (η) = -10 log (
 

 
 ∑

 

  
 

 
   )                                        (1)  

Nominal is the best characteristic: 

SNR (η) = -10 log (
 

 
 ∑   

  
   )                                       (2) 

Smaller the better characteristics: 

 SNR (η) = -10 log (
 ̅

  )                                                    (3) 

where ‘ ̅’ is the average observed data, ‘  ’ the variance of ‘y’, 

‘n’ the number of observations, and ‘y’ the observed data. For 

each type of characteristic, a higher or lower value of S/N ratio 

indicates the better result value [27]. 

Figure (1): Taguchi design procedure [26]. 
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4. Experimental Details 

The experiments were performed in rectangular (100 × 100 × 

50 mm) of Al-MMc be prepared using the stir casting method 

with SiO2 nanoparticle additions of 1, 3, and 5 wt.% used as 

reinforcing material in the preparation of composites Table 1. 

The machine tool used for end milling is a 4-axis CNC vertical 

milling machine with a maximum spindle speed is 8000 rpm 

(SINUMERIK 802D-CNC machine). End mills with varied 

numbers of cutting edges have been used for dry cutting. Input 

parameter values for rotating speed, cutting speed, SiO2 

addition content, number of cutting edges, depth of cut, and 

feed rate are displayed in Table 2 for the parameters. Surface 

roughness and cutting force are the responses. The orthogonal 

array L27 is employed for testing. The root mean square value 

parameter (Ra) is used for evaluating surface roughness using 

the Surface Roughness Tester (TAYLOR-HOBSON-

SURTRONIC). Cutting forces are measured using a KISTLER 

dynamometer of type (5806 A). While the end mill tool used is 

an HSS with an 8 mm diameter. 

     Table (1) : Chemical composition of Al-6063 alloy (wt. %) 

Table (2) : Input process parameters and levels used in the 

designed experiments. 

 

Figure (2): depicts the experimental setup and the experimental 

arrangement's schematic design. 

The process's output parameters would be impacted by milling 

variables. Each of them, namely rotational speed cutting speed, 

additions, number of cutting edges, feed rate, and axial depths 

of cutting, was altered in various levels in complete factorial 

table 3 way to examine their impact on the milling process 

perfectly. As a result, 27 experiments were devised and 

conducted in this research. The experiment design levels are 

displayed in Table 3. It should be mentioned that both the 

author's experience and a review of the literature were used to 

create the experimental design. 

Figure (2): Experimental set-up  

 

Table (3) :L27OA Design layout and experimental results 

5. Results and discussion 

ANOVA is a statistical method that, after analyzing 

experimental data, offers significant results. This method is 

excellent for demonstrating the level of importance of a factor's 

or a factor's interaction with a factor's effect on a specific 

response. 

The figures, diagrams, and graphs provided below were created 

using Minitab 19 Statistical Software to illustrate the findings 

for the experimental settings. 

The Orthogonal Array Design L27 (313) was created using 

Taguchi design. Based on the six components with three levels 

each, 27 experimental tests were obtained. The effects of 

cutting forces, surface roughness, and metal removal rate on 

each factor individually (X1,X2,X3,X4,X5,X6), as well as on 

how they interact (X1.X2, X1.X3 and X12), were observed. 

Table )4( :Analysis of Variance for the Cutting Forces a. 

            

a Df: degrees of freedom; SS: sum of squares; MS: Variance; P: 

percent contribution. * Pooled, Tabulated   F-       ratio at  99% 

confidence level: F0.01, 2, 10 = 7.56. 

This suggests that the parameter with the greatest influence 

will be the one for which the line is inclined the most. The 

main effects figure in this study makes it abundantly evident 

that parameter X1 (Rotational speed), followed by parameter 

X2 (Cutting speed), had the greatest impact on Fc, but 

parameters X4 (No.of cutting edge) and X6 (Depth of cut) 
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have insignificant impact. The process parameter 

combination with the best results for everyone's greatest 

mean S/N ratio and Fc is X11,X21,X32,X41,X53,X61 according 

to figure3. 

Figure 3. Plot of control factors effects (S/N ratios) for (Fc) 
 

5.2 For the MRR 

ANOVA results for the MRR (table 5) show that cutting speed 

is the most factor effect on MRR at contributes 30.02 % and the 

addition is the second factor effect at contributes 8.00 %. The 

factors X2, and X1.X2 are statistically significant at 90%, 95% 

and 99% confidence levels. Table 6 shows how different 

operating factors affect the MRR's S/N ratio. It is evident that 

the rotational speed at level 2 (1000 rpm), cutting speed at level 

2 (25 m/min), additions at level 1 (1 wt.%), number of cutting 

edges at level 2 (2 flutes), feed rate at level 1 (200 mm/min), 

and depth of cut at level 1 (0.4 mm) are the best levels for 

various control factors to achieve maximize Ra 

Table (5): Analysis of Variance for the MRRa. 

 

a Df: degrees of freedom; SS: sum of squares; MS: Variance; P: 

percent contribution. * Pooled, Tabulated   F-       ratio  at  99% 

confidence level: F0.01, 2, 8 = 8.65. 

Table (6): Effect of factors on S/N (MRR) a. 

 

 

 

Response surface plots of the metal removal rate as a function 

of several process variables are shown in Figures 4(a) through 

(c). For a three-dimensional surface, metal removal rate values 

(dB) are calculated as a function of X1, X2, X3, X1.X2, and 

X1.X3. In each of these figures, one of the three variables is held 

Figure(4): Effect of studied parameters on the 

Predicted MRR. 

as a function of X1, X2, X3, X1.X2, and X1.X3. In each of 

these figures, one of the three variables is held constant at the 

central level. Figure (4a) shows a surface plot showing the 

relationship between cutting speed, rotational speed, and MRR 

while considering additions. The assumption is that the addition 

will always be 3%. Figures (10 b-c) depict the effect of cutting 

speed and additions on MRR while maintaining a constant 

rotational speed, in contrast to the surface plot, which 

demonstrates how cutting speed affects MRR contour at varied 

rotational speeds. Also observed is the fact that rotational speed 

at high levels results in relatively high MRR and that, when 

taking the contour effect into account. 

5.3 For The surface roughness 

ANOVA results for the Ra (table 7) based on S/N ratio show 

that rotational speed is the most factor effect on Ra at 

contributes 29.16 % and the cutting speed is the second factor 

effect at contributes 13.71 %. 

Table (7): Analysis of Variance for the surface roughness a. 

 

The factor X1.X2 is statistically significant at 90% and 95% 

confidence levels. Table 8 shows that X2, X4 and X1.X2 are 

statistically significant at 90%, 95% and X3 is statistically 

significant at 90% confidence levels. X6 and X1.X3 are 

insignificant at any confidence levels. X1 is statistically 

significant at all confidence levels. The ANOM results show 

that the rotational speed and cutting speed are the most 
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important factors influencing Ra. It contributes 28.99 % and 

13.65 % respectively. The second factor that influences Ra is 

No. of cut Edges It contributes 11.70 %. 

Table )7(  :Analysis of Variance for the surface roughness a. 

 

a Df: degrees of freedom; SS: sum of squares; MS: Variance; P: 

percent contribution. * Pooled, Tabulated   F-       ratio  at  99% 

confidence level: F0.01, 2, 4 =18. 

Table )8( :Analysis of Means for the surface roughness a 

a Df: degrees of freedom; SS: sum of squares; MS: Variance; P: 

percent contribution. * Pooled, Tabulated   F-       ratio  at  99% 

confidence level: F0.01, 2, 8 =8.65. 

6. Mathematical models 

Based on the S/N ratio in Eq. (5), a mathematical model for the 

cutting forces has been created. According to figure 5, the 

model deviance ranges from 0.13% to 20.72% (at run number 

experiment 16 and 17 respectively shown on Appendix ), 

whereas the average percentage accuracy is 94.07%  

Fc S/N = 153.6 – 0.0471 X1 - 0.070X2 – 1.36 X3 +2.75 X4 -

0.0231X5 +5.7 X6 + 0.001698 X1X2 +0.00358 X1X3 

+0.000041X1
2
                                                                        (5)                                                                                           

Figure (5):  Measured Vs. Predicted S/N ratio 

response (Fc). 

  Based on the mean response and S/N ratio found in equations 

(6 and 7) as well as the surface roughness, a mathematical 

model for surface roughness has been created. The average 

percentage accuracy of the surface roughness based on S/N 

ratio data is 86.61%, while the model deviance ranges from 

0.33% to 39.92%(at run number experiment 8 and 26 

respectively).  

Ra S/N =-15.4 + 0.00151 X1 - 0.0407 X2 -0.047 X3 + 0.795 X4 + 

0.00011 X5 – 0.48 X6 +0.000072 X1X2 + 0.000315 X1X3 - 

0.000001 X1
2
                                                                           (6) 

Ra Mean =
 
10.03 - 0.00207 X1 -0.210X2 - 0.1119X3 -0.897X4 - 

0.000102X5 +0.248 X6 - 0.000025 X1X2 - 0.000544 X1X4 + 

0.00396 X2
2
                                                                             (7) 

Based on the S/N ratio in Eq. (8), a mathematical model for the 

metal removal rate has been created. the model deviance ranges 

from 0.46% to 4.71% (at run number experiment 9 and 6 

respectively), whereas the average percentage accuracy is 

94.07%. 

MRR S/N= 23.83 + 0.00399X1 + 0.084 X2 + 0.091 X3 - 

0.000059X1X2 - 0.000206 X1X3 -  0.000001 X1
2                  (8)                                                   

Comparison of experimental and predicted (Fc& Ra& MRR) 

based on S/N ratio. Shown on table 9 below  

Table (9): The Comparison of experimental and predicted (Fc& Ra& 

MRR) based on S/N ratio. 

 

7. CONCLUSIONS 

In the current study, Al6063-SiO2 composites with 1%, 3%, and 

5% of SiO2 were made using stir casting equipment and then 

machined on a CNC end-milling. The following results were 

then noted: 

1. 1.Cutting speed and additives (%wt.) are the significant 

variables affecting MRR in end milling of the Al6063- SiO2 

composites. 

2. 2.The optimum conditions obtained from Taguchi method for 

optimizing of cutting forces in end milling of the Al6063- SiO2 

composites under dry condition is rotational speed of 500 rpm 

followed by depth of cut of 0.4 mm and feed rate of 600 

mm/min at 3% additives. 
3. 3.According to Taguchi optimization results, the best MRR are 

produced by rotating speed at 1000 rpm m/min, cutting speed  

at 25 m/min, adding 1 weight percent, using three cutting edges, 

feeding at 200 mm/min, and cutting to a depth of 0.4 mm. 

Additionally, at a rotating speed of 1500 rpm, a cutting speed of 

25 m/min , 3 weight percent additions, four edges, a high-level 

feed rate of 600 mm/min, and a depth of cut of 0.8 mm, the 

average surface roughness is attained. 

4.The cutting speed contributes the most (30.02%), followed by 

the additives (8.0%), and rotating speed (2.77%), which makes 
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up the least amount of the ideal MRR, according to the MRR 

ANOVA. 

5.The validation of RSM models reveals that the mean 

percentage variation in the cutting force value is 5.93 %, the 

mean MRR is 2.24 % the mean surface roughness is 13.39 %, 

and the mean surface roughness is calculated using the S/N 

ratio. 

Appendix 

 Experimental versus predicted for the Cutting Forces (Fc)  
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